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Quantum theory of fluctuations in a cold damped accelerometer
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Abstract. We present a quantum network approach to real high sensitivity measurements. Thermal and
quantum fluctuations due to active as well as passive elements are taken into account. The method is
applied to the analysis of the capacitive accelerometer using the cold damping technique, developed for
fundamental physics in space by ONERA and the ultimate limits of this instrument are discussed. It is
confirmed in this quantum analysis that the cold damping technique allows one to control efficiently the
test mass motion without degrading the noise level.

PACS. 42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps – 04.80.Cc Experimental
tests of gravitational theories – 07.50.-e Electrical and electronic components, instruments, and techniques

1 Introduction

When discussing ultimate limits in ultrasensitive measure-
ments, we have to take into account fundamental fluctu-
ation processes as well as a realistic description of the
measurement device. This requires to treat in the same
theoretical framework a number of problems which are of-
ten tackled by different approaches. Real measurements
always have a finite time resolution, that is also a charac-
teristic frequency bandwidth, as well as a finite duration.
The measurement is never infinitely precise and fluctua-
tions are superimposed to the signal. Ultrasensitive mea-
surement devices often make use of active systems either
for amplifying the signal to a readable level or to make the
system work around its optimal operating point with the
help of feedback loops. Feedback loops can also be used to
modify the natural frequency response and, in particular,
to perform an optimal damping of moving elements.

The aim of the present paper is to develop an approach
of ultrasensitive measurements taking into account these
various problems. In particular, we want to treat ther-
mal as well as quantum fluctuations for systems contain-
ing active as well as dissipative elements. The approach
will be illustrated by analyzing the sensitivity of a cold
damped capacitive accelerometer developed for fundamen-
tal physics applications in space [1–3]. In this measure-
ment system, feedback loops are used to keep the proof
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mass perfectly centered in the accelerometer cage and to
damp its motion without adding the thermal fluctuations
which would necessarily accompany a passive damping.
With this technique, fluctuations are reduced to an ef-
fective temperature well below the operating temperature
[4]. The cold damping technique is known to be compatible
with very high sensitivities of the measurement [5]. How-
ever the question of ultimate sensitivities compatible with
the existence of quantum fluctuations remains open. This
question is important not only for a better understand-
ing of the instrument but also for the long term purpose
of an improvement of its performances. For earth based
detection of gravitational waves, highly effective motion
isolation and feedback controlled noise reduction is de-
veloped [6,7]. The cryogenic accelerometers planned for
future space mission such as LISA will require very low
noise levels and they use cryogenic techniques.

Relations between fluctuations and dissipation have
been first discovered by Einstein which studied the vis-
cous damping of mechanical systems [8]. Another impor-
tant application was the study of Johnson-Nyquist noise in
resistive electrical elements [9]. These general thermody-
namical relations were widely studied in the framework of
linear response theory [10,11]. In the limit of a null tem-
perature, they reproduce quantum fluctuations required
by Heisenberg inequalities [12]. Important progress have
been made during the last two decades towards a better
control of the effect of quantum fluctuations on ultrasen-
sitive measurements [13,14]. It has been shown that it
was possible to bypass the limitations usually associated
with quantum noise by using back action evading mea-
surements or quantum non demolition techniques [15–18].
Fluctuations associated with amplification were also ex-
tensively studied [19–21]; they determine the ultimate
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performance of linear amplifiers [22,23] and they may be
used to reduce inloop quantum fluctuations with feedback
[24,25].

In the present paper we will study this kind of mea-
surement systems by using a systematic approach which
may be termed as “quantum network theory”. Initially
designed as a quantum extension of the classical theory of
electrical networks [26], this theory was mainly developed
through applications to optical systems [27,28]. It can
be viewed as a generalization of the linear response the-
ory [29] and is also fruitful for analysing non-ideal quan-
tum measurements with active elements [30] as soon as a
quantum theory of ideal operational amplifier is available
[31]. The main features of this approach are recalled in
Section 2.

Here, this theory will be illustrated by a study of an
electromechanical measurement system comprising active
and dissipative components coupled to a capacitive po-
sition sensor. The parametric nature of the electrome-
chanical coupling allows the use of a frequency transfer
technique in order to eliminate the influence of the 1/f
noise in the electric part of the device. Active elements
are used for preamplifying the position sensing signal to
a readable level as well as for controlling the mechani-
cal motion through a feedback loop. The main features of
the cold damped capacitive accelerometer are described
in Section 3. Then the capacitive sensor is analysed in ab-
sence of servo control in Section 4 and in presence of servo
control in Section 5. These results are used in Section 6
to evaluate the ultimate sensitivity of the measurement
system, which is found to be essentially determined by
the free mechanical impedance of the proof mass and the
ratio of the frequencies involved in the frequency transfer
performed by the transducer.

2 Noise in electromechanical systems

In this section we present the basic elements of the quan-
tum network approach. Quantum and thermal fluctua-
tions in dissipative and active systems are all described
in terms of quantum fields. All the descriptions are given
in the frequency domain and the convention of quantum
mechanics is used for the Fourier transform. The electron-
ics convention may be recovered by substituting j to −i.

In a quantum network approach, the various fluctua-
tions entering the system, either by dissipative or by ac-
tive elements, are described by input fields in noise lines
coupled to a reactive network (see Fig. 1).

In particular, a resistance Rp is modeled as a semi-
infinite coaxial line p with characteristic impedance Rp.
The voltage Up and current Ip associated with the re-
sistance are the inward and outward fields pin and pout

evaluated at the end of this line

Ip =

√
~ |ω|
2Rp

(
pout − pin

)
,

Up =

√
~ |ω|Rp

2
(
pout + pin

)
. (1)

Up

Ip

p
out

p
in

Fig. 1. Representation of an electrical circuit as a quantum
network. The central box is a reactive multipole which con-
nects noise lines corresponding to the fluctuations entering the
system, either by dissipative or by active elements. For exam-
ple, the upper left port p with voltage Up and current Ip is
connected to a line of impedance Rp with inward and outward
fields pin and pout.

These equations may be written equivalently

Up = RpIp +
√

2~ |ω|Rppin,

pout =

√
2

~ |ω|Rp
Up − pin. (2)

The first equation in (2) is the standard current-voltage
relation for a resistance with the Johnson-Nyquist noise
described as the input fields pin going to the end of the
line. The second equation gives the output fields pout emit-
ted back to the line. In the following, these fields are used
either to feed other elements of the system or to perform
a measurement by extracting information from the sys-
tem of interest through a line considered as the detection
channel.

Input fields pin are described as free fields in a two-
dimensional quantum field theory. They obey the standard
commutation relation of such a theory[

pin [ω] , pin [ω′]
]

= 2πδ (ω + ω′) ε (ω) (3)

where ε (ω) denotes the sign of the frequency ω. This
relation just means that the positive and negative fre-
quency components correspond respectively to the anni-
hilation and creation operators of quantum field theory.
Input fields corresponding to different lines commute with
each other. For simplicity, the fields incoming through the
various ports are supposed to be uncorrelated with each
other. The interaction with non linear reactive elements
are linearized around the working point of the system.
With the whole network is then associated a scattering
S matrix, also called repartition matrix, describing the
transformation from the input fields to the output ones.
The output fields pout are also free fields which obey the
same commutation relations (3) as the input ones. Hence,
the S matrix must be unitary in order to preserve the field
commutation relations.

Input fluctuations are characterized by a noise spec-
trum σin

pp with its well-known expression for a thermal
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equilibrium at a temperature Tp〈
pin [ω] · pin [ω′]

〉
= 2πδ (ω + ω′) σin

pp [ω] ,

σin
pp [ω] =

1
2

coth
~ |ω|

2kBTp
· (4)

The symbol “·” denotes a symmetrized product for quan-
tum operators and kB is the Boltzmann constant. The
energy per mode will be denoted in the following as an
effective temperature

kBΘp = ~ |ω|σin
pp =

~ |ω|
2

coth
~ |ω|

2kBTp
· (5)

This effective temperature kBΘp reproduces the zero point
energy ~ |ω| /2 at the limit of zero temperature and the
classical result kBTp at the high temperature limit. The
output fields are also characterized by noise spectra σout

pp

which are different from those associated with input fields,
due to the interaction with the system. In fact the analysis
of the measurement sensitivity essentially consists in an
evaluation of these functions.

In the capacitive sensor used in the accelerometer, a
frequency transposition technique is used to reduce the
1/f electrical noise. The mechanical signal at frequency Ω
is imprinted on the sidebands ωt±Ω of an electrical carrier
oscillating at frequency ωt. Such a signal is described by
quadrature components

p1 [Ω] = p [ωt +Ω] + p [−ωt +Ω] ,

p2 [Ω] =
p [ωt +Ω] + p [−ωt +Ω]

i
· (6)

Assuming that ωt � Ω, the noise spectra of these quadra-
tures is given by

σin
p1p1

= σin
p2p2

=
2kBΘp
~ωt

(7)

where Θp is evaluated from (5) for a frequency equal to ωt.
The previous discussion of electrical elements is easily

extended to include mechanical elements. A mass damped
by a viscous force is described by equations similar to (1)

Vm =

√
~ |Ω|
2Hm

(
mout −min

)
,

Fm =

√
~ |Ω|Hm

2
(
mout +min

)
, (8)

or equivalently

Fm = HmV +
√

2~ |Ω|Hmm
in,

mout =

√
2

~ |Ω|Hm
Fm −min. (9)

In these equations, Hm is the friction coefficient, Vm the
velocity of the mass, Fm the force acting on the mass,
Ω the mechanical frequency and min and mout are input

Ul

Il

Ur

Ir

If

Zf

a b

Fig. 2. Representation of the ideal operational amplifier as a
quantum network with a left (input) port l and a right (output)
port r. The input and output impedances are respectively in-
finite and null. The amplifier works in the limit of infinite gain
with a reactive feedback Zf . The voltage and current noises of
the amplifier are modeled as input fields in the two noise lines
a and b.

and output quantum fields in an equivalent mechanical
line m. In particular, the fluctuating Langevin force is
proportional to the input fluctuations min. The free fields
min and mout obey the same commutation relation (3) as
for electrical lines and an effective temperature is defined
as in (5)

kBΘm = ~ |Ω| σin
mm =

~ |Ω|
2

coth
~ |Ω|

2kBTm
· (10)

The description of fluctuations in active elements re-
quires further developments. In the present paper, atten-
tion is restricted to active elements built on ideal opera-
tional amplifiers working in the limits of an infinite input
impedance, a null output impedance and an infinite gain.
Such an amplifier is described as a quantum network con-
nected to the left (input) port, the right (output) port
and two lines needed to describe these noise generators
associated with the amplifier [31].

The equations of the amplifier, schematized in Fig-
ure 2, are read as

Ul [ω] = Ur [ω] + ZfIf [ω]

=
√

2~ |ω|Ra

(
ain [ω]− bin [−ω]

)
,

Il [ω] + If [ω] =

√
2~ |ω|
Ra

(
ain [ω] + bin [−ω]

)
. (11)

Ul and Ur are the voltages at the left and right ports,
Il the current at the left port, If the current across the
reactive impedance Zf (ReZf = 0) used to adjust the
transimpedance gain of the amplifier. The voltage noise
and current noise associated with the amplification are
described by two fields ain and bin which verify the free
field commutation relation (3). The field bin appears in
the equation after a conjugation which interchanges an-
nihilation and creation operators. The presence of such a
conjugation, already known for linear amplifiers [22,23],
plays an important role when commutators are evalu-
ated. It can be forgotten when symmetrized correlation
functions are computed and will be considered as im-
plicit in forthcoming equations. In (11), the impedanceRa,
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Fig. 3. The accelerometer is designed to detect the motion of
the frame A.F. defined by the accelerometer cage with respect
to an inertial frame I.F. Any acceleration, seen as an inertial
force F acting on the proof mass M , is detected by a capacitive
sensor CS. The signal of this sensor is used for the force detec-
tion D as well as for keeping the mass centered with respect
to the cage through a servo-control loop SL.

which characterizes the amplifier noise, is derived from the
ratio of the voltage and current noises

Ra =
√
σUU

σII
· (12)

These fluctuations have been assumed to be phase-
insensitive, i.e. to be the same for any field quadrature.
Although these assumptions are not mandatory for the
forthcoming analysis, the impedance Ra is considered as
constant over the spectral domain of interest and the ef-
fective temperature Θb is taken equal to Θa.

3 General description of the accelerometer

The capacitive accelerometer operation is presented in
Figure 3.

The instrument is designed to detect the acceleration
of the accelerometer cage due to any external force. To
this aim the relative motion of the proof mass M with
respect to the frame defined by the cage is measured by
the capacitive sensor. An important characteristics of the
mass is its free mechanical impedance determined by a
restoring force to the center of the cage with a stiffness K
and a viscous damping with a coefficient Hm. Depending
on the physical origin of these effects, K and Hm may be
frequency dependent.

Dedicated to space applications, the accelerometer op-
eration is based on the electrostatic suspension of the
proof mass in all spatial directions. Hence, the mass is kept
centered with respect to its cage through 3 servo-control
loops demanded at least for stability (Earnshaw theorem).
The acceleration signal is in fact extracted from the knowl-
edge of the electrostatic force necessary to maintain the
mass centered. In the real device, the control of position
and attitude is performed by six servo-control channels
acting separately. For simplicity, only one of the channels,
corresponding to a translation degree of freedom, is ana-
lyzed in this paper.
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Fig. 4. Scheme of the capacitive sensor. The proof mass is
placed between two electrodes. The position dependent capac-
itances are polarized by an AC sinewave source which induces
a mean current at frequency ωt in the symmetrical mode. The
mass displacement is read as the current induced in the anti-
symmetric mode. An additional capacitance C2 is inserted to
make the antisymmetric mode resonant with ωt. The electrical
losses due to the quality factor of the transformer are modeled
as a resistance Rl for the antisymmetric mode. The signal is
detected after an ideal operational amplifier with capacitive
feedback Cf followed by a synchronous demodulation (not rep-
resented on this picture). The impedance of the detection line
plays the role of a further resistance Rr. The detected signal
then feds the servo loop used to keep the mass centered with
respect to the cage.
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Fig. 5. Equivalent scheme of the capacitive sensor. The trans-
former of Figure 4 is replaced by the two inductances L/2 while
the associated losses are modeled as a resistance Rl. The other
impedances are modified accordingly.

As depicted in Figure 4, the proof mass is placed
between two symmetric electrodes supported by the in-
strument cage which create two position dependent ca-
pacitances. When the mass is centered in its cage, both
capacities are equal and the capacitance bridge is bal-
anced. A displacement of the mass creates an asymmetry
of the bridge detected thanks to a differential transformer
and a pumping signal applied on the mass. Conversely,
voltages applied on these electrodes allow to exert elec-
trostatic forces on the mass. Capacitances are thus used
for position sensing as well as for generating the suspen-
sion force. Coupling between the primary and secondary
coils of the transformer being assumed ideal, the trans-
former can be replaced by the equivalent circuit presented
in Figure 5. It is considered from now on that this trans-
formation has been performed and the circuit impedances
redefined accordingly.

The capacitances are polarized by an AC source of
frequency ωt which is chosen large enough for avoid-
ing electrical 1/f noise and for using low noise electron-
ics. The sinewave source Et induces current at frequency
ωt in the transformer symmetrical mode. In this static
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Fig. 6. Description of the accelerometer as a quantum net-
work performing input output transformations on a number
of lines. m is the mechanical line describing mechanical fluc-
tuations as well as the measured signal, that is the external
force Fext. r1 is the detection line. α labels the other lines
a1, a2, b1, b2, r1, r2, l1, l2 which contribute to noise.

and symmetric configuration, the current in the antisym-
metric mode is zero and the fluctuations of the two modes
are uncoupled. Then a motion of the proof mass at fre-
quency Ω induces an asymmetry in the system and creates
sidebands on this electrical carrier ωt. The effect of this
asymmetry will be treated in a linear approximation with
respect to the deviations from the steady state equilib-
rium. The current induced in the antisymmetric mode is
thus proportional to the current in the symmetrical mode
and to the mass displacement. With this approximation,
the fluctuations of the symmetrical mode remain uncou-
pled to the antisymmetric mode and to the mass motion.
This is why the symmetric mode will be disregarded in
the following. In order to optimize the signal to noise ra-
tio, an additional capacitance C2 is inserted which makes
the antisymmetric mode resonant with ωt. The electrical
losses are mainly due to the quality factor of the trans-
former and they are modeled by a resistance Rl for the
antisymmetric mode.

The signal imprinted on the antisymmetric mode is
detected after an ideal operational amplifier with capaci-
tive feedback (charge amplifier) followed by a synchronous
demodulation. This provides a low frequency voltage pro-
portional to the displacement of the mass. In a quantum
network approach, the signal is delivered by the capacitive
sensor as the output field of a detection line the impedance
of which plays the role of a further resistance Rr. The de-
scription of the sensor is given in more detail in the next
section. This signal is used to feed the servo loop and keep
the mass at its equilibrium. Through the mass motion, it
contains information on the external forces acting on the
mass. The noise added by the measurement device to the
measured observable is evaluated in the next sections, by
considering input fluctuations coming from all noise lines
in the quantum network model of Figure 6.

It is in fact impossible to reach a stable equilibrium
with a passive electrostatic configuration. This is why the
mass is actively maintained at its equilibrium position
by the generated electrostatic forces tailored through the
servo-control loop. The feedback control includes a pro-
portional and a derivation term. The generated electro-
static force proportional to the measured mass displace-
ment defines the servo-loop stiffness and, more or less,
the measurement bandwidth of the accelerometer. The
force proportional to the mass velocity introduces a mo-

tion damping to the benefit of the control loop stability.
This technique of active friction is equivalent to an ef-
fective damping with reduced fluctuations in comparison
to those necessarily associated with a passive mechanical
damping. This is why it is called a cold damping tech-
nique. It will turn out that the added fluctuations may
even be smaller than the fluctuations associated with the
residual mechanical friction although the latter is much
less efficient than the active friction.

4 The capacitive sensor

In this section the capacitive sensor is analyzed in the
absence of servo control loop, with the equivalent electrical
circuit of Figure 5.

For a mass motion to be detected at frequency Ω, the
signal is transposed by the electromechanical transducer
to sidebands ω = ±ωt + Ω of the carrier frequency ωt.
The electrical quadratures are defined as in equations (6)
and they are dealt with separately so that the transducer
appears as a three port network. The first port is a me-
chanical one and corresponds to the velocity Vfr of the
free running proof mass and the force F exerted on it.
The two other ports are electrical ones with the voltages
Ut,n and currents It,n of the two quadratures n = 1, 2. The
three port network is described by an electromechanical
impedance matrix

F =
(

iK
Ω
− iMΩ

)
Vfr + κtZtIt1,

Ut1 = ZtIt1,

Ut2 = 2iκtZt
ωt

Ω
Vfr + ZtIt2,

Zt = − 1
2iΩCt

· (13)

iK/Ω − iMΩ is the reactive part of the mechanical
impedance of the proof mass expressed in terms of mass
M and stiffness K. Zt is the electrical impedance eval-
uated at both frequencies ±ωt +Ω for a resonant circuit
tuned at the polarization frequency ωt. κt is an electrome-
chanical coupling constant proportional to the amplitude
of the field created by the sinewave electrical source ap-
plied to the mass. This impedance matrix shows that the
mechanical motion can be detected through the electrical
quadrature 2 whereas it is unaffected by the fluctuations
coming through this port. Meanwhile the mechanical mo-
tion is affected by the input fluctuations of the electrical
quadrature 1. These features, typical of a quantum non
demolition coupling between electrical and mechanical el-
ements, is discussed in more detail in [30].

Fluctuations associated with losses are taken into
account as the input fields lin coming to the trans-
ducer through the electrical line of impedance Rl as in
equation (2) and as the input fields min coming through
the mechanical line of impedance Hm as in equation (8).
The external force Fext to be detected comes as a mean
field superimposed to the fluctuations min so that the
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equation of motion of the free running mass may be
written

ΞmVfr = Fext − κtZtIt1 −
√

2~ |Ω|Hmm
in

Ξm = Hm − iMΩ +
iK
Ω

(14)

Ξm is the full mechanical impedance of the proof mass in
its free running regime, now including not only the reac-
tive part but also the damping coefficient Hm.

The voltage and currents fluctuations associated with
the amplifier have then to be considered. In the configu-
ration studied here, equations (11) are replaced by

Ul [ω] = Ut [ω] = Ur [ω] + ZfIf [ω]

=
√

2~ |ω|Ra

(
ain [ω]− bin [−ω]

)
Il [ω] + If [ω] + It [ω] =

√
2~ |ω|
Ra

(
ain [ω] + bin [−ω]

)
Zf =

1
−iωtCf

(15)

with Cf the capacitor in the feedback loop of the am-
plifier. To complete the set of equations associated with
the electromechanical transducer, the detected signal is
the output field rout which comes out from the line r of
impedance Rr and is therefore related to the voltage Ur

as in equation (2).
Equations (13–15) may be solved to obtain the output

field as well as the mass velocity. The latter quantity is
expressed in terms of the input fields (α labels the input
noise lines m,a1, a2, b1, b2, r1, r2, l1, l2; see Fig. 6)

ΞmVfr = Fext +
∑
α

λαα
in,

λm = −
√

2~ |Ω|Hm,

λa1 = −λb1 = −
√

2~ωtRaκt,

λa2 = λb2 = λr1 = λr2 = λl1 = λl2 = 0. (16)

The velocity of the proof mass coupled to the electrome-
chanical transducer thus appears as a linear combination
of the external force Fext to be measured and of input
fields in the noise lines associated either with dissipative
elements or with active ones. A number of coefficients
λα are null as a consequence of our simplifying assump-
tions, in particular the assumption of the ideal operational
amplifier. There remain only two contributions to be dis-
cussed. The first corresponds to the Langevin force fluctu-
ations associated to the mechanical damping and propor-
tional to fieldsmin. The second one comes from the voltage
noise at the input of the amplifier which is transformed to
a back action force exerted on the mass by the capacitive
transducer. Accordingly, the noise spectrum characteriz-
ing the velocity fluctuations is the sum of two contribu-
tions which depend on the effective temperatures Θm and
Θa associated respectively with the mechanical and the

amplification noise through (10) and (5)

|Ξm|2 σVfrVfr =
∑
α

|λα|2 σin
αα

= 2HmkBΘm + 8Raκ2
t kBΘa. (17)

The output signal rout
1 is then evaluated by solving the

same equations (13–15). As the velocity, it is a linear com-
bination of the external force Fext and of input fields in the
various noise lines. When the expression of rout

1 is normal-
ized so that the coefficient of proportionality appearing in
front of Fext is reduced to unity, the force estimator F̂ext

is just the sum of this external force to be measured and
of the equivalent input force noise

F̂ext =
√
~Rr

2ωt

ΩΞm

2κtZf
rout
1

= Fext +
∑
α

µαα
in. (18)

The coefficients µα are found to be

µm = −
√

2~ |Ω|Hm,

µl2 = − iΩ
√
~√

2Rlωtκt

Ξm, µl1 = 0,

µr1 = − Ω
√
~Rr

2
√

2ωtZfκt
Ξm, µr2 = 0,

µa1 = −µb1 =
√

2~Raωt

(
−κt +

Ω

2κtωtZf
Ξm

)
,

µa2 = − iΩ
√
~Ra√

2κt
√
ωt

Ξm

(
1
Ra
− 1
Rl
− 1
Zt

)
,

µb2 = − iΩ
√
~Ra√

2κt
√
ωt

Ξm

(
1
Ra

+
1
Rl

+
1
Zt

)
. (19)

The comparison of equations (16, 19) shows that all the
terms λα of the expression (16) are found present in (19).
The additional terms are interpreted as the electrical noise
due to the detection process. The force estimator (18) can
then be rewritten as

F̂ext = Ξm (Vfr + Vse) (20)

where ΞmVfr is given by (16) while ΞmVse collects all the
other terms appearing in (19). Because of the normaliza-
tion (18), these terms can be identified as those which are
proportional to Ξm. Physically, they represent the sensing
error. They involve amplifier current and voltage noise as
well as Nyquist noise associated to the loss and detection
electrical lines. Since the amplifier voltage noise is present
in both contributions ΞmVfr and ΞmVse, it follows that
these two contributions are not independent sources of
noise.

The sensor noise spectrum ΣFF, i.e. the noise associ-
ated with fluctuations of (F̂ext−Fext), is now expressed as

ΣFF =
∑
α

|µα|2 σin
αα. (21)
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As a consequence of the preceding discussion, this added
noise spectrum can be written

ΣFF = |Ξm|2 (σVfrVfr + σVseVse + σVfrVse) ,

σVfrVfr =
2HmkBΘm

|Ξm|2
+

8Raκ2
t kBΘa

|Ξm|2
,

σVseVse =
Ω2

ω2
tκ2

t

(
1

2Rl
kBΘl +

Rr

8 |Zf |2
kBΘr ,

+Ra

(
1

|Zf |2
+

1
R2

a

+
∣∣∣∣ 1
Rl

+
1
Zt

∣∣∣∣2
)
kBΘa

)
,

σVfrVse = 4RaCf
K −MΩ2

|Ξm|2
kBΘa. (22)

The first two terms correspond to the noise spectrum of
the velocity, the terms proportional to the factor |Ξm|2
represent the noise added by electrical detection. Finally
the last line describes the result of the interference be-
tween these two contributions.

5 The cold damped accelerometer

The cold damped accelerometer consists in the sensor
studied in the preceding section and the feedback loop
used to generate the voltages applied on the electrodes to
control the mass motion.

The motion is measured through the sensor signal rout
1

previously described after a synchronous demodulation.
The feedback force applied for controlling the motion of
the mass is obtained through a low frequency amplifier.
The set of equations describing the complete accelerome-
ter is the same as in the previous section (13–15) except
for the equation of the proof mass motion (14) which is
now read as

ΞmVcd = Fext − κtZtIt1

−
√

2~ |Ω|Hmm
in −Gsr

out
1 + F in

s . (23)

Vcd now denotes the velocity of the proof mass in presence
of the cold damping. The term Gsr

out
1 represents the feed-

back action on the mass with the whole gain of the servo
loop denoted Gs. The impedance of the detection line r
is assumed to be small Rr � |Zf | so that its contribution
is negligible. It is therefore equivalent to add a feedback
proportional to rout or proportional to the output voltage
of the amplifier Ur. F in

s are the force fluctuations due to
the active and passive elements used to generate the servo
control force.

The solution of these equations yields the velocity of
the cold damped mass

(Ξm +Ξme)Vcd = Fext +
∑
α

λαα
in +

∑
β

λββ
in,

Ξme = Hme +
iKme

Ω
= −

√
2ωt

~Rr

2κtZf

Ω
Gs.

(24)

The servo loop produces an effective mechanical impedan-
ce Ξme written as the sum of a damping term Hme and
a restoring force of stiffness Kme, both parameters be-
ing frequency dependent. In particular Kme can include
the effect of an integrator term in the feedback corrector.
This term ensures the motionlessness of the mass at very
low frequencies to the benefit of the instrument accuracy.
The noise terms λααin represent the fluctuations due to
the input fields αin as in the previous section. In addi-
tion, there are noise terms λββin added by the active and
passive elements in the servo loop.

Let us consider now the actual instrument case where
the effective mechanical impedance Ξme is much larger
than the free mass impedance Ξm

Hme � Hm,

Kme �
∣∣K −MΩ2

∣∣ . (25)

These conditions are fully compatible with the stability of
the feedback as evaluated in the design and demonstrated
with the real instruments [1–3]. In the equations of motion
written previously, this case corresponds to the limit of an
infinite loop gain

Gs →∞. (26)

Then, the noise terms λββin coming from the servo loop
scale as

√
Gs. Hence their effect on velocity scales as

λβ
Gs
∝ 1√

Gs

→ 0 (27)

so that they may be forgotten in (24). This only means
that, as well known, the dominant noise sources are those
associated with the first amplification stage, here the
terms λααin.

The velocity (24) stabilized by the feedback loop is
now read as

Vcd = −
√
~Rr

2ωt

Ω

2κtZf

∑
α

λα
Gs
αin,

λm

Gs
= 0,

λl2

Gs
= − 2iZf√

RlRr

,
λl1

Gs
= 0,

λr1

Gs
= −1,

λr2

Gs
= 0,

λa1

Gs
= −λb1

Gs
= 2
√
Ra

Rr
,

λb1

Gs
= −2iZf

√
Ra

Rr

(
1
Ra
− 1
Rl
− 1
Zt

)
,

λb2

Gs
= −2iZf

√
Ra

Rr

(
1
Ra

+
1
Rl

+
1
Zt

)
. (28)

Since the servo loop efficiently maintains the mass at its
equilibrium position, the velocity is no longer affected by
the external force Fext. However the sensitivity to external
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force is still present in the correction signal which will
be discussed later on. The residual motion of the mass
is described by the various noise terms λααin/Gs. The
values of these coefficients are easily interpreted through
a comparison with the force estimator (18) evaluated in
the preceding section for the capacitive sensor. The cold
damped motion of the proof mass is indeed described by
the simple equation

Vcd = −Vse (29)

where Vse is the difference between the real velocity of the
mass and the velocity measured by the sensor. This means
that the servo loop efficiently corrects the motion of the
mass except for the sensing error Vse.

With the same set of equations (13–15) with (23 re-
placing 14), the output field rout

1 is evaluated and exploited
as a measurement of the external force. As in the previous
section, this output field is normalized so that the force
estimator F̂ext appears as the sum of the real force and of
an equivalent force noise

F̂ext =
√
~Rr

2ωt

ΩΞme

2κtZf
rout
1

= Fext +
∑
α

µαα
in. (30)

This expression is similar to the estimator (18) evaluated
for the free mass although the free impedance Ξm has been
replaced by the effective impedance Ξme.

A quite remarkable result is then obtained. In the limit
of the infinite loop gain and with the same approxima-
tions as above, the expressions of the coefficients µα are
exactly the same as those (19) corresponding to the open
loop case. The expression of the force estimator F̂ext is
the same as in the free case while the expression of the
velocity is quite different. The actual motion of the mass
is indeed independent of the external perturbations in the
servo control case with the velocity determined by the
sensor noise (29).

It is in fact possible to reexpress the force estima-
tor (30) as the sum of two terms

F̂ext = Ξm (Vfr + Vse) = Ξm (Vfr − Vcd) . (31)

The first term is exactly the same as the actual mo-
tion (16) of the free running mass. It is the sum of the
external force Fext and of the force fluctuations exerted
on the mass in the absence of servo control, namely the
mechanical Langevin force and the back action force due
to the sensor. The second term is the actual velocity (29)
of the mass that is also the already discussed sensor error.
Once again, these two terms are correlated since both de-
pend on the same amplifier voltage noise. The expression
of the noise spectrum ΣFF is not reproduced here since it
is exactly the same (22) as in the open loop case.

6 Discussion

The results obtained in the two previous sections allow to
evaluate the performance of the cold damping technique

for a wide range of experimental parameters and for all
temperatures. In this concluding section, we want to dis-
cuss these results by focussing our attention on the present
state-of-the-art instrument as well as on ultimate sensitiv-
ity limits which can be reached in the future with such an
accelerometer.

The noise spectrum for the velocity of the proof mass
in its free running regime may be rewritten

HmσVfrVfr =
2

1 +∆2

(
kBΘm + 4

Ra

Rm
kBΘa

)
. (32)

The parameter ∆ measures the reactive impedance of the
free mass as compared to the dissipative one

K

Ω
−MΩ = Hm∆. (33)

The electrical resistance Rm allows to express the me-
chanical damping coefficient Hm through the conversion
relation

Rm =
Hm

κ2
t

· (34)

With this definition, the ratio Ra/Rm allows to compare
the electrical and mechanical noises in (32).

The noise spectrum σVseVse for the sensing error Vse,
which is also the noise σVcdVcd for the velocity Vcd of the
proof mass in the cold damped regime, is expressed in a
similar form

HmσVseVse =
Ω2

ω2
t

(
Rm

Rl
kBΘl +

RmRr

4 |Zf |2
kBΘr

+2RaRmkBΘa

(
1
|Zf |2

+
1
R2

a

+
∣∣∣∣ 1
Rl

+
1
Zt

∣∣∣∣2
))

. (35)

The sensing error is minimized by diminishing the fluctu-
ations coming from the electrical noise lines, that is when
the transducer impedance Zt, the feedback impedance Zf

and the loss impedance Rl are chosen high enough. The
transposition ratio Ω2/ω2

t appears as a common factor
which greatly helps in keeping this error low.

The two contributions (32, 35) are added in the whole
added noise spectrum ΣFF together with a third term
σVfrVcd

HmσVfrVse = 4
Ra

|Zf |
Ω

ωt

∆

1 +∆2
kBΘa. (36)

This term is also reduced when the feedback impedance
Zf is large.

Let us evaluate the whole noise spectrum ΣFF for the
specific case of the instrument proposed for the µSCOPE
space mission devoted to the test of the equivalence
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principle. The parameters have the following values

M = 0.27 kg, Hm = 1.3× 10−5 kg s−1,

K = 4× 10−6 N m−1, ∆ ' 100,
Ω

2π
' 5× 10−4 Hz,

ωt

2π
' 105 Hz,

κt = 10−7 C m−1, Rl = 2.5× 105 Ω,

Rm = 1.3× 109 Ω, Θm = 300 K,

|Zf | = 1.6× 105 Ω, |Zt| = 1014 Ω,

Ra = 0.15× 106 Ω, Θa = 1.5 K.
(37)

In these conditions, the added noise spectrum is domi-
nated by the mechanical Langevin forces

ΣFF = 2HmkBΘm

= 1.1× 10−25
(
kg m s−2

)2
/Hz. (38)

This corresponds to a sensitivity in acceleration
√
ΣFF

M
= 1.2× 10−12m s−2/

√
Hz. (39)

Taking into account the integration time of the experi-
ment, this is consistent with the expected instrument per-
formance corresponding to a test accuracy of 10−15.

In the present state-of-the-art instrument, the sensi-
tivity is thus limited by the residual mechanical Langevin
forces. The latter are due to the damping processes in the
gold wire used to keep the proof mass at zero voltage [3].
With such a configuration, the detection noise is not a
limiting factor. This is a remarkable result in a situation
where the effective damping induced through the servo
loop is much more efficient than the passive mechanical
damping. This confirms the considerable interest of the
cold damping technique for high sensitivity measurement
devices.

Future fundamental physics missions in space will re-
quire even better sensitivities. To this aim, the wire will
be removed and the charge of the test mass will be con-
trolled by other means, for example UV photoemission.
The mechanical Langevin noise will no longer be a limi-
tation so that the analysis of the ultimate detection noise
will become crucial for the optimization of the instrument
performance. This also means that the electromechanical
design configuration will have to be reoptimized taking
into account the various noise sources associated with de-
tection.

In order to evaluate these added noise sources we con-
sider the whole noise spectrum obtained by taking into
account the spectra (32, 35, 36)

ΣFF = Hm

(
1 +∆2

)
(σVfrVfr + σVseVse + σVfrVse) . (40)

This spectrum contains terms scaling as Rm as well as
terms scaling as 1/Rm. Hence, there exists an optimum
value for Rm when the other parameters as fixed. In the
same way, it includes terms scaling as Ra and as 1/Ra

so that there exists an optimum value for Ra. In contrast,
the noise is always lowered by reducing the electrical losses
with large values for the impedances Zt, Zf and Rl and
low values for Rr.

In these limits, the added noise spectrum ΣFF takes a
simple form

ΣFF = 2HmkBΘm + 8Hm
Ra

Rm
kBΘa

+ 2Hm

(
1 +∆2

) Ω2

ω2
t

Rm

Ra
kBΘa. (41)

This final result is optimized by matching the values of
the impedances Ra and Rm so that(

Ra

Rm

)opt

=
√

1 +∆2

2
|Ω|
ωt
,

Σopt
FF = 2HmkBΘm + 8Hm

√
1 +∆2

|Ω|
ωt

kBΘa. (42)

This is the sum of the already discussed limit associated
with mechanical Langevin fluctuations and of a second
term which represents the ultimate detection noise. The
first contribution dominates the second one for the present
state-of-the-art instrument but this will no longer be the
case for future instruments designed for better perfor-
mance tests of the equivalence principle. For such instru-
ments, equation (42) shows that the sensitivity may be
largely improved.

Thanks are due to Alain Bernard, Vincent Josselin and Eric
Willemenot for helpful discussions.
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